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Abstract

This work investigates data-efficient strategies for improving generalization using Dataset Cartography [Swayanmidipta
et al.l [2020], augmentation, and perturbation-based uncertainty quantification techniques. We begin by establish-
ing baseline performance using the google/electra-small-discriminator |Clark et al.l[2020] model trained on
SQuAD [Rajpurkar et al.,|2016]. We then extend the traditional Dataset Cartography calculation of intra-sample
confidence and variability, derived from training dynamics, to also include inter-sample confidence/variability
using Sampling with Perturbation for Uncertainty Quantification (SPUQ) |Gao et all [2024], allowing us to also
capture a measure of epistemic uncertainty. Both metrics are then used to map training examples in terms of
their variability, allowing us to select subsets of examples for training, focusing on those with high variability.
These subsets are tested with multiple data augmentation strategies and used to train separate models, which
are evaluated on both in-domain and out-of-domain performance. In total we evaluate 20 different experimental
configurations, including training on subsets selected by intra-sample, inter-sample, and aggregated variability,
with and without data augmentation.

We find that while training on the full dataset yields the strongest in-domain performance, targeting subsets
of highly variable (ambiguous) examples outperforms random subsets of equivalent size on both in-domain and
out-of-domain evaluations, with the most significant gains observed in the latter. Data augmentation alone did
not improve in-domain performance but did result in performance improvements for out-of-domain evaluation.
The most substantial improvements were achieved by training on subsets selected by aggregated variability,
which combines intra-sample and inter-sample uncertainty metrics, and augmenting with both paraphrased and
adversarial examples. These findings suggest that focusing on challenging examples and augmenting training data
is a data efficient method for enhancing model robustness and generalization to out-of-domain distribution shifts.

1 Methodology

Dataset Cartography [Swayamdipta et al| [2020] introduced Dataset Cartography, a framework for analyzing
training dynamics to identify and categorize dataset examples based on the model’s behavior during training. Specif-
ically, they track two metrics for each training example over multiple epochs:

e Confidence (u;): The mean probability assigned to the true label by the model across training epochs.

e Variability (o;): The standard deviation of the model’s predicted probabilities for the true label across epochs.
By plotting examples based on their confidence and variability, Dataset Cartography identifies three regions:

1. Easy-to-Learn: High confidence and low variability, examples the model consistently predicts correctly.

2. Ambiguous: Moderate confidence and high variability, examples where the model’s predictions fluctuate
during training.

3. Hard-to-Learn: Low confidence and low variability, often associated with mislabeled or difficult to learn
examples.
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For each training example i, we tracked the model’s predicted probability for the correct answer over multiple
epochs, calculating:
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where pye) (y5|z;) is the model’s predicted probability for the correct answer at epoch e, p; is the mean intra-
sample confidence, and o; is the standard deviation (intra-sample variability).

Sampling with Perturbation for Uncertainty Quantification (SPUQ) While Dataset Cartography uses
training dynamics to assess model confidence and variability, it primarily captures aleatoric uncertainty, which arises
from inherent data ambiguity. To incorporate epistemic uncertainty—uncertainty due to model limitations—Gao
et al.|[2024] proposed Sampling with Perturbation for Uncertainty Quantification (SPUQ). SPUQ extends traditional
uncertainty quantification by introducing input perturbations and sampling methods.

The inter-sample confidence for a target example is calculated as:
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where P(7) is the set of perturbed examples for example ¢, s(y;,y;) is a similarity score between the predicted
answers for ¢ and j, and w;; is a weight based on the similarity between the contexts of ¢ and j. Following the
recommendations of |Gao et al.|[2024], we use Rouge-L as a similarity score, s(y;,y;), and 5 input perturbations were
generated (via paraphrasing) for each dataset example.

Aggregated Uncertainty In addition to evaluating intra-sample and inter-sample uncertainties separately, we
calculate an aggregated confidence metric as the mean of both. This allowed us to evaluate training on subsets of
examples with both high intra-sample and high inter-sample uncertainties. To combine intra-sample and inter-sample
uncertainties, we calculate the following aggregated confidence metric:

Cagg(i) _ Cintra(i) ; Cinter(i) (4)

2 Datasets

SQuAD Dataset (In-Domain Training/Evaluation) The Stanford Question Answering Dataset (SQuAD) [Ra-
jpurkar et al.,|2016] is a widely used benchmark for evaluating machine reading comprehension models. It consists of
question-answer pairs derived from Wikipedia articles where each question is associated with a context paragraph,
and the answer is a span of text within the context.

Adversarial QA Dataset (Out-Of-Domain Evaluation) The Adversarial QA dataset [Bartolo et al., [2020]
is designed to evaluate the robustness of QA models by providing adversarial examples. This dataset contains
examples with intentional distractor content that are designed to be more difficult for models to answer correctly.
Adversarial QA is used in this project to assess the model’s generalization capabilities on out-of-domain data.

Paraphrased Augmentation Dataset (squad_paraphrasing 5) To introduce additional diversity in the phras-
ing of SQuUAD training examples, as well as aid in the calculation of SPUQ scores, we generated a paraphrased
version of the SQuAD dataset, referred to as squad_paraphrasing 5. For each original question and context pair,
we created five paraphrased augmentations resulting in a total of 522k paraphrased examples.



Adversarial Augmentation Dataset (squad_adversarial) To improve model robustness, we generated a
dataset of adversarial augmentations, named squad_adversarial. For each entry in the SQuAD training dataset, we
created an adversarial example by introducing distracting or misleading information into the context. This dataset
contains 174k adversarial examples.

Data Augmentation Strategy To generate the augmentation datasets, we used OpenAIl’s GPT-40-mini model
to produce both the paraphrased and adversarial datasets. The model was prompted via the OpenAl API with
custom templates for each augmentation type. These prompts were designed to generate paraphrased and adversarial
examples while preserving the original answer spans. Every example in the training portion of the original SQuAD
dataset was added to the prompt and sent to GPT-40-mini. The resulting paraphrased and adversarial examples
were added to the respective augmentation datasets resulting in a total of 696k augmentation examples.

3 Experiment Configurations

We conducted a series of experiments to evaluate the impact of both data augmentation and focused training on
high variability examples. The configuration of these experiments varied along two axes: the subset of the dataset
used for training and the application of data augmentation techniques. We used five different subset selections from
the SQuAD dataset for training, each representing a different selection strategy. These configurations were designed
to establish baselines and evaluate subsets selected using variability metrics. Additionally, we applied four different
data augmentation strategies to each subset resulting in a total of 20 unique experimental configurations. Fach of
these configurations was then used to train a new model which was evaluated on both the in-domain SQuAD dataset
and the out-of-domain Adversarial QA dataset after 5 epochs.

Baseline Model Configurations The following dataset configurations were used to train models to use as base-
lines for comparison. The Full Dataset configuration was used to compare models trained on subsets to the
performance of a model trained on the full dataset. While equivalent performance was not expected, this configura-
tion served as a hypothesized upper bound for the performance of models trained on smaller subsets. The Random
33% subset functioned as a peer baseline for the other subset configurations, providing a more direct comparison
point trained on the same number of examples.

Subset Selection Using Variability Metrics The subsets for each configuration were selected by sorting the
training examples in descending order based on the specified variability metric (intra-sample, inter-sample, or ag-
gregated) and selecting the top 33%. This approach targets the most ambiguous examples relative to the specified
metric. These included the following variations:

e Top 33% Sorted by High Intra-Sample Variability
o Top 33% Sorted by High Inter-Sample Variability
e Top 33% Sorted by High Aggregated Variability

Data Augmentation Strategies Data augmentation was applied using the following configurations:

e No Augmentation: No augmentation examples were added to the training set.

Paraphrasing Augmentation: Paraphrased examples were added to the training set.

Adversarial Augmentation: Adversarial examples were added to the training set.

Both: Both paraphrased and adversarial examples were added to the training set.

Evaluation Metrics The models were evaluated using the HuggingFace SQuAD evaluation script, computing
exact match (EM) and F1 scores on the validation set of both the SQuUAD dataset and the Adversarial QA dataset
to assess in-domain and out-of-domain performance, respectively.



4 Results

The experimental results, summarized in Tables[Ta}2D] reveal clear patterns with respect to training set composition
and data augmentation strategies. We evaluate both in-domain performance on SQuAD and out-of-domain general-
ization on AdversarialQA. As expected, training on the full dataset achieves the highest in-domain scores. However,
restricting training to carefully selected subsets identified as “ambiguous” (i.e., high variability examples) leads
to performance improvements when measured against the randomly selected baselines. Additionally, augmenting
training data with paraphrased and adversarial examples enhances out-of-domain generalization, particularly when
combined with subsets selected for high variability. The most substantial out-of-domain improvements are observed
when training on subsets selected by aggregated variability and augmented with both paraphrased and adversarial
examples.

Table 1: In-Domain Scores

(a) F1 Scores (b) Exact Match (EM) Scores
Configuration None Para. Adv. Both Configuration None Para. Adv. Both
Full Dataset 85.2 852 852 85.1 Full Dataset 774 T72 772 773
Random 33% 80.3 80.6 81.4 81.8 Random 33% 71.2 721 724 725
Intra-sample Var. (High) 82.0 81.5 81.6 82.0 Intra-sample Var. (High) 73.3 72,5 729 73.3
Inter-sample Var. (High) 81.1 81.2 80.7 81.9 Inter-sample Var. (High) 71.7 713 712 728
Aggregated Var. (High) 82.0 81.6 81.1 82.3 Aggregated Var. (High) 726 726 71.9 73.0

In-Domain Performance Models trained on the full SQuAD dataset without augmentation achieve an F1 score of
85.2 and an EM score of 77.4. Reducing the training data to a random 33% subset unsurprisingly lowers the baseline
in-domain F1 to 80.3 and EM to 71.2. By contrast, models trained on subsets chosen according to high intra-sample
variability or aggregated variability achieve slightly stronger in-domain performance (e.g., 82.0 F1 and 73.3 EM
for intra-sample variability, no augmentation; 82.0 F1 and 72.6 EM for aggregated variability, no augmentation).
This indicates that focusing on more “ambiguous”’ examples—those that challenge the model during training—can
partially compensate for using fewer training instances.

Data augmentation alone does not yield improvements over the unaugmented condition in-domain, and in some
cases, augmentation slightly reduces the F1 or EM scores. For instance, paraphrasing or adversarial augmentation
when training on the full dataset remains around 85.1-85.2 F1 and 77.2-77.3 EM, showing no meaningful gains.
Similarly, subsets selected for intra-, inter-, or aggregated variability show minimal in-domain improvements from
augmentation. These findings suggest that adding more data through paraphrasing or adversarial methods does not
inherently strengthen in-domain performance beyond what can be achieved by careful example selection.

Out-of-Domain Performance A more pronounced effect is observed on the Adversarial QA evaluation, where
out-of-domain F1 and EM scores are generally lower. The full dataset condition starts at 28.1 F1 and 18.0 EM.
Augmentation slightly improves these out-of-domain scores (up to 29.4 F1 and 19.0 EM with both paraphrasing and
adversarial augmentation). Importantly, the variability-based subsets achieve stronger out-of-domain performance
than a random subset of the same size, confirming the hypothesis that focusing on ambiguous examples can enhance
robustness. For example, training on the top 33% of examples by intra-sample variability yields an F1 of 24.7
without augmentation and rises to 27.0 with both paraphrasing and adversarial augmentation. Similarly, the top
aggregated variability subset shows even more pronounced gains: from 24.0 F1 (no augmentation) to 27.9 F1 (both
augmentations), and from 14.9 EM (no augmentation) to a maximum of 18.4 EM with both augmentations. This
model even outperforms the model trained on the full dataset without augmentation in EM score (18.4 vs 18.0) and
approaches the full dataset with both augmentations in F1 score (27.9 vs. 28.1).

5 Conclusion

This study explored targeted strategies for improving model generalization under data-efficient conditions by lever-
aging Dataset Cartography, perturbation-based uncertainty quantification, and data augmentation techniques. By
using uncertainty metrics to identify “ambiguous” examples—those characterized by high intra-sample, inter-sample,
or aggregated variability—we were able to extract smaller, more impactful training subsets. Training on these subsets
led to gains in model performance relative to randomly selected baselines, with the most significant improvements



Table 2: Out-of-Domain Scores (AdversarialQA)

(a) F1 Scores (b) Exact Match (EM) Scores
Configuration None Para. Adv. Both Configuration None Para. Adv. Both
Full Dataset 28.1 291 27.7 294 Full Dataset 18.0 19.0 176 19.0
Random 33% 21.7 239 23.6 255 Random 33% 12.1 14.3 142 153
Intra-sample Var. (High) 24.7 259 25.0 27.0 Intra-sample Var. (High) 154 158 15.5 17.5
Inter-sample Var. (High) 25.6 25.2 24.7 26.5 Inter-sample Var. (High) 15.8 14.6 14.8 16.7
Aggregated Var. (High) 24.0 26.5 25.6 27.9 Aggregated Var. (High) 149 16.8 16.0 184

observed in out-of-domain evaluations. While data augmentation did not enhance in-domain performance, it did
improve out-of-domain generalization, particularly when combined with subsets selected for high variability. The
most substantial gains were achieved by training on subsets selected by aggregated variability and augmenting with
both paraphrased and adversarial examples.
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A Dataset Cartography

We generated Dataset Cartography plots to visualize the training examples based on their confidence and variability
metrics using both intra-sample and inter-sample confidence. Figure [I] and Figure [2] illustrate the distribution of
training examples, highlighting the regions corresponding to easy-to-learn, ambiguous, and hard-to-learn examples
using both metrics. Our key findings include:

Ambiguous Examples Enhance Robustness Subsets selected for their high variability consistently outper-
formed random subsets of equivalent size in out-of-domain evaluations, confirming that focusing on inherently chal-
lenging instances fosters more robust representations. Notably, these targeted subsets helped bridge the performance
gap introduced by training on less data overall.

Augmentation Alone Did Not Improve In-Domain Scores Incorporating paraphrased or adversarially per-
turbed examples did not significantly lift in-domain metrics, which remained best when training leveraged the full
dataset. However, adding these synthetic variants did not diminish performance and provided a crucial boost to
out-of-domain generalization.

Combining Uncertainty Metrics and Augmentation Yields Strongest Gains raining on subsets defined
by aggregated uncertainty—those reflecting both intra-sample (aleatoric) and inter-sample (epistemic) variabil-
ity—yielded stronger out-of-domain improvements than either metric alone. When combined with both paraphrased
and adversarial augmentations, these subsets produced models that approached or exceeded the out-of-domain per-
formance of models trained on the full dataset without augmentation.

Practical Trade-Offs and Considerations While maximum in-domain accuracy still demands comprehensive
training data, our results suggest that selectively focusing training on challenging examples, supplemented by strate-
gically generated augmentations, can yield models that generalize better to novel, adversarial, or otherwise domain-
shifted inputs. This approach can be particularly valuable in scenarios where data collection is costly or domain
adaptation is critical.

In summary, this work demonstrates that uncertainty-aware, data-efficient training strategies can meaningfully
improve model resilience to domain shifts. Future research might investigate more sophisticated perturbation meth-
ods, other uncertainty metrics, or adaptive augmentation schedules, aiming to further refine and automate the
selection of examples that drive robust, transferable NLP models.
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Figure 1: Dataset Cartography Plot of SQuAD using Figure 2: Dataset Cartography Plot of SQuAD using
Intrasample Confidence and Variability. Intersample Confidence and Variability.

The Dataset Cartography plots for both metrics demonstrate very similar distributions for dataset examples across
the easy-to-learn, ambiguous, and hard-to-learn regions. As can be seen by looking at the (intra/inter)_sample_confidence_std
and (intra/inter)_sample_confidence_mean historgrams, the majority of examples fall into the easy-to-learn category
with low variability and high confidence. However, a significant portion of the dataset also falls into the ambiguous
region which was the focus for selecting training subsets. Note that this distribution is in agreement with the findings
from |[Swayamdipta et al.|[2020].




B Data Augmentation Prompts

B.1 Paraphrasing Augmentation System Prompt

You are being provided with QUESTION, CONTEXT, and ANSWER texts. Your task is to provide {count}
paraphrasings of both the QUESTION and CONTEXT. The paraphrasings should maintain the same meaning
as the original texts and MUST contain the ANSWER span. If the paraphrased CONTEXT does not
contain the ANSWER, it will be invalid. The paraphrased question should be semantically similar to
the original but can be rephrased for variety.

Here are a few examples to follow:

Example 1:

QUESTION: ’Who was the first president of the United States?’

CONTEXT: ’George Washington was the first president of the United States.’
ANSWER: ’George Washington’

Paraphrased Question: ’Who became the inaugural president of the United States?’
Paraphrased Context: ’The United States’ first president was George Washington.’

Example 2:

QUESTION: ’When did the Titanic sink?’

CONTEXT: ’The Titanic sank on April 15, 1912, after hitting an iceberg.’

ANSWER: ’April 15, 1912’

Paraphrased Question: ’What year did the Titanic sink?

Paraphrased Context: ’After striking an iceberg, the Titanic sank on the night of April 15, 1912.°

B.2 Adversarial Augmentation System Prompt

You are being provided with QUESTION, CONTEXT, and ANSWER texts. Your task is to provide {count}
adversarial versions of the CONTEXT. Adversarial versions should add distractors or misleading
information that could confuse a model, while keeping the correct ANSWER in the CONTEXT. Ensure the
ANSWER remains accurate in the modified CONTEXT.

Here are a few examples to follow:

Example 1:

QUESTION: ’Where was Albert Einstein born?’

CONTEXT: ’Albert Einstein was born in Ulm, Germany, in 1879.°

ANSWER: ’Ulm, Germany’

Adversarial Context: ’Albert Einstein was born in Ulm, Germany, in 1879. Some believe he was born in
Munich, but that is incorrect.’

Example 2:

QUESTION: ’What is the capital of France?’

CONTEXT: ’Paris is the capital of France.’

ANSWER: ’Paris’

Adversarial Context: ’Paris is the capital of France, although some mistakenly think Lyon holds that title.

B.3 User Prompt
QUESTION: {question}

CONTEXT: {context}
ANSWER: {answer}

VERY IMPORTANT: Ensure that the new context contains the ANSWER (’{answerl}’). If the answer is not present
in the new context, the augmentation will be invalid.
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